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We report a theoretical investigation on spin-Hall conductance fluctuation of disordered four-terminal
devices in the presence of Rashba or/and Dresselhaus spin-orbital interactions in two dimensions. As a
function of disorder, the spin-Hall conductance GsH shows ballistic, diffusive, and insulating transport
regimes. For given spin-orbit interactions, a universal spin-Hall conductance fluctuation (USCF) is found
in the diffusive regime. The value of the USCF depends on the spin-orbit coupling tso but is independent of
other system parameters. It is also independent of whether Rashba or Dresselhaus or both spin-orbital
interactions are present. When tso is comparable to the hopping energy t, the USCF is a universal number
�0:18e=4�. The distribution of GsH crosses over from a Gaussian distribution in the metallic regime to a
non-Gaussian distribution in the insulating regime as the disorder strength is increased.
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The notion of a dissipationless spin current [1] has
attracted considerable interest recently. In its simplest
form, a spin current is about the flow of spin-up electrons
in one direction, say, �x, accompanied by the flow of an
equal number of spin-down electrons in the opposite di-
rection, �x. The total charge current in the x direction is
therefore zero, Ie � e�I" � I#� � 0; and the total spin cur-
rent is finite: Is � @=2�I" � I#� � 0. For a pure semicon-
ductor system with spin-orbital (SO) interactions, it has
been shown [1] that an electric field in the z direction can
induce the flow of a spin current in the x direction perpen-
dicular to the electric field: such a spin current is dissipa-
tionless because the external electric field does no work to
the electrons flowing inside the spin current. If the semi-
conductor sample has a finite x extent, the flow of spin
current should cause a spin accumulation at the edges of
the sample, resulting in a situation where spin-up electrons
accumulate at one edge while spin-down electrons accu-
mulate at the opposite edge. Hence a spin-Hall effect [2,3]
is produced where chemical potentials for the two spin
channels become different at the two edges of the sample.
This interesting phenomenon has been subjected to exten-
sive studies, and there are several experiments reporting
spin accumulation which may have provided evidence of
this effect [4]. It has been shown that for a pure two-
dimensional sample without any impurities, the Rashba
SO interaction generates a spin-Hall conductivity having
a universal value of e=8� [3]. It has also been shown that
any presence of weak disorder destroys this spin-Hall
effect in the large sample limit [5,6]. On the other hand,
numerical studies have provided evidence that for meso-
scopic samples, spin-Hall conductance can survive weak
disorder [7–9].

One of the most striking quantum transport features in
the mesoscopic regime is the universal charge conductance

fluctuation (UCF) [10–12]: quantum interference gives
rise to the sample-to-sample fluctuation of charge conduc-
tance of order e2=h, independent of the details of the
disorder, Fermi energy, and the sample size as long as
transport is in the coherent diffusive regime characterized
by the relation between relevant length scales, l < L < �.
Here L is the linear sample size, l the elastic mean free
path, and � the phase coherence length. If time-reversal
symmetry is broken, UCF is suppressed by a factor of 2.

A very important and interesting issue therefore arises:
What are the properties of the fluctuations of spin-Hall
conductance in disordered samples? Is there a transport
regime where spin-Hall conductance fluctuation is univer-
sal? The answers to these questions are nontrivial because
the flow of dissipationless spin current is qualitatively
different from the flow of charge current driven by an
external electric field. It is the purpose of this Letter to
report our investigations of these issues. For a disordered
four-terminal sample with a given Rashba SO interaction
strength tso, and/or Dresselhaus interaction strength tso2,
our results suggest that there is indeed a universal spin-Hall
conductance fluctuation (USCF) whose root mean square
amplitude is g � 0:18�e=4��, independent of other system
details (thus universal). The fluctuation is, however, a func-
tion of the SO interaction strength and found to be well
fitted by a functional form of rms�GsH� � g tanh�jtso �
tso2j=0:17�. Finally, the distribution of spin-Hall conduc-
tance obeys a Gaussian distribution in the metallic regime
and deviates from it in the insulating regime.

To investigate USCF, we consider a four-terminal device
in two-dimensions schematically shown in the left inset of
Fig. 1. We will first discuss the results in the presence of
only Rashba interaction. In the presence of Rashba inter-
action [�soz � ��� k�], the Hamiltonian of this device is
given by [8]
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where cyi� is the creation operator for an electron with spin
� on site i, and x̂ and ŷ are unit vectors along the x and y
directions. Here t � @

2=2ma2 is the hopping energy and
tso � �so=2a is the effective spin-orbit coupling. The on-
site energy is given by �i � 4t. In addition, static
Anderson-type disorder is added to �i with a uniform
distribution in the interval 	�W=2; W=2
, where W char-
acterizes the strength of the disorder. We consider the
situation where Rashba interaction is present everywhere
except in leads 2 and 4 (see the left inset of Fig. 1) in order
to measure the conserved spin current [8]. We apply ex-
ternal bias voltages at the four terminals as �Vi; i �
1; . . . ; 4� � �v=2; 0;�v=2; 0�: such a setup generates a
spin current flowing from lead 2 to 4, i.e., a spin-Hall effect
measured from these two leads [8].

The spin-Hall conductance GsH is calculated from the
Landauer-Buttiker formula [7]:

 GsH � �e=8��	�T2";1 � T2#;1� � �T2";3 � T2#;3�
; (2)

where the transmission coefficient is given by T2�;1 �
Tr��2�Gr�1Ga�; here Gr;a are the retarded and advanced
Green functions of the central disordered region of the
device which we evaluate numerically. The quantities �i�

are the line width functions describing coupling of the
leads to the scattering region, and are obtained by calculat-
ing self-energies due to the semi-infinite leads using a
transfer matrices method [13]. The spin-Hall conductance

fluctuation is defined as rms�GsH� �
��������������������������������
hG2

sHi � hGsHi
2

q
,

where h� � �i denotes averaging over an ensemble of
samples with different configurations of the same disorder
strength W. Note that in the presence of disorder, although
one could use another definition �GsH � �e=4���
�T2";1 � T2#;1� to calculate and obtain the same average
spin-Hall conductance as that of GsH, the spin-Hall fluc-
tuation can only be obtained correctly using the definition
of Eq. (2). We perform our calculations on L� L square
samples with four leads described above. Sample sizes of
L � 40 up to 100 are examined [14]. To fix units, through-
out this Letter we measure the energy E, disorder strength
W, and spin-orbit coupling tso in terms of the hopping
matrix t.

Figure 1 plots spin-Hall conductance fluctuation vs
Fermi energy at a fixed tso � 0:3 and sample size L � 40
for several disorder strengths W � 1; 2; 3. We have also
shown the averaged spin-Hall conductance in the right
inset. Because of the electron/hole symmetry, only data
for energy range 	0; 4
 are shown. Over 10 000 disordered
samples are averaged. For pure sample without disorder, as
the Fermi energy is increased, the number of subbands
increase. As a result, the spin-Hall conductance GsH shows
small oscillations. When disorder is increased from zero,
GsH decreases as expected, and eventually the small oscil-
lation due to the subbands vanishes. Most importantly,
Fig. 1 shows substantial sample-to-sample fluctuations of
GsH, measured by rms�GsH�, of the order � e

4� , where � is a
number between 0.1 and 0.2. Such an amplitude of fluc-
tuation is comparable to the spin-Hall conductance itself.

In Figs. 2(a) and 2(b), we plot the hGsHi and rms�GsH� as
a function of disorder strength W at fixed Fermi energy
E � 1 for a number of different spin-orbit couplings from
tso � 0:2 up to 0.7. Several observations are in order. First,
the spin-Hall conductance [Fig. 2(a)] decreases smoothly
as the disorder strength is increased: the transport charac-
teristics goes from quasiballistic at smallW to the diffusive
regime at larger W. In the diffusive regime, the spin-Hall
conductance decreases exponentially with the disorder
strength between W � 	1; 5
. Finally it goes to the insulat-
ing regime for even larger W where GsH vanishes. Second,
the numerical data show that the onsets of insulating
regime Wc are different for different spin-orbit couplings
tso. The larger the spin-orbit coupling, the larger Wc. This
finding is consistent with that of Ref. [8], which suggested
that the localization length depends on tso and belongs to
two-parameter scaling. Third, from the spin-Hall conduc-
tance fluctuation shown in Fig. 2(b), we observe that for
small disorderW < 1, the fluctuations for different tso have
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FIG. 1. Spin-Hall conductance fluctuation vs energy for dis-
ordered samples. Triangles, squares, and circles are for W �
1; 2; 3, respectively. Left inset: schematic plot of the four-
terminal mesoscopic sample where Rashba interaction exists in
the center scattering region and the leads 1,3. The width of the
square sample is L. A small voltage bias is across leads 1,3, and
spin-Hall conductance is measured through leads 2,4. Right
inset: the ensemble averaged spin-Hall conductance GsH vs
electron energy for SO interaction strength tso � 0:3. Solid
line, pure sample with W � 0; other symbols are the same as
the main panel. In all figures the spin conductance and its
fluctuation are measured in e=4�.
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very similar values and the curves collapse. For larger
disorder, the fluctuations develop a plateau structure so
that rms�GsH� becomes independent of the disorder pa-
rameter W for each given tso. In this sense, the fluctuation
rms�GsH� becomes ‘‘universal’’ and the spin-Hall transport
enters the regime with USCFs. Importantly, both the width
of the plateau and the value of USCF depend on tso. The
larger the tso, the wider the fluctuation plateau which
characterizes the diffusive regime.

Now we examine the dependence of spin-Hall conduc-
tance fluctuation rms�GsH� on system size L in the inset of
Fig. 2(a) for tso � 0:3. With weak disorder W � 1 (stars)
the fluctuation increases with sample size indicating that
spin-Hall conductance is not yet in the USCF regime
because transport is quasiballistic. In the diffusive regime,
W � 2; 3; 4, the fluctuations saturate at �e=4� where � �
0:2. The independence of system size by the fluctuation
rms�GsH� provides strong evidence of USCF. Namely, as
long as transport is in the diffusive regime, the fluctuation
of the spin-Hall conductance is dominated by quantum
interference giving rise to a universal amplitude. Since
the value of USCF [which is obtained from each curve in
Fig. 2(b)] depends on the spin-orbit coupling tso as seen
from Fig. 2, we have obtained a collection of the USCF for
different tso which is shown in Fig. 3(a). Interestingly, the
USCF can be well fitted (solid line) by a function
rms�GsH� � g tanh�tso=0:17�, where g � 0:18e=4�. This
can be understood as follows. When tso � 0, there is no
spin-Hall current and hence no fluctuations. There is a

crossover regime before the fluctuation saturates to the
USCF plateau.

Figures 4(a)–4(d) plot the distribution function of spin-
Hall conductance, P�GsH�, for several different disorder
valuesW. For eachW, data are accumulated by calculating
20 000 realizations of disorder. P�GsH� appears to clearly
obey a Gaussian distribution in the metallic regime up to
W � 5. For larger W between 	5; 10
, transport is in the
insulating regime; the symmetric distribution exhibits non-
Gaussian behavior [Fig. 4(c)]. At even larger disorderW �
12 shown in Fig. 4(d), the distribution becomes non-
Gaussian and asymmetric. The deviation from Gaussian
distribution can be characterized by the moments of spin-
Hall conductance. We have calculated the skewness �1 and
kurtosis �2 whose definitions are [15] �1 � �3=�

3=2
2 and

�2 � �4=�2
2 � 3, where �n � h�x� hxi�ni (n � 2; 3; 4)

denote the central moments. The skewness describes the
degree of asymmetry of a distribution around its mean,
while the kurtosis measures the relative peakedness of a
distribution. The results are plotted in Fig. 4(f), showing
that in the metallic regime W < 5, both skewness and
kurtosis are essentially zero while they become nonzero
for larger W, consistent with the distributions. Hence the
skewness and kurtosis can be used to identified the diffu-
sive regime. Importantly, these quantities can be measured
experimentally [10]. Finally, we have checked that the
above features of the spin-Hall conductance fluctuation
are generic and valid for other values of E and tso. For
instance, Fig. 4(f) shows the rmsGsH vs Fermi energy when
W � 3 and tso � 0:6, 0.7. We see that between E � 1 and
E � 3, rmsGsH is around the universal value 0.18.

So far we have focused on spin-Hall conductance fluc-
tuations with the Rashba interaction. To further demon-
strate the universal behavior, we have also analyzed the
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FIG. 3. (a) USCF values vs Rashba spin-orbit coupling tso at
E � 1. Inset: rmsGsH vs Fermi energy for W � 3 in the presence
of both Rashba and Dresselhuss SO coupling, tso � 0:5 and
tso2 � 0:2. (b),(c) rmsGsH vs Desselhaus SO coupling tso2 at E �
2, W � 3, and tso � 0:5=tso � 0:1. In the cases of inset of (a),
(b), and (c), 40 000 samples are collected.
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FIG. 2. (a) Ensemble averaged GsH vs disorder strength W for
tso � 0:2 (cross), 0.3 (solid triangle), 0.4 (open circle), 0.5 (star),
0.6 (rumbus), and 0.7 (solid square). The average is over 20 000
samples with L � 40. Inset: size dependence of spin-Hall con-
ductance fluctuation with tso � 0:3. Different symbols are for
W � 1 (stars), 2 (rectangles), 3 (circles), and 4 (triangles). The
ensemble average is over 20 000 samples for different size L.
(b) The corresponding ensemble averaged spin-Hall conductance
fluctuation vsW; the symbols are for the same tso values as in (a).
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case of Dresselhaus spin-orbital interaction by adding a
term 	so��xkx � �yky� in Eq. (1). Using unitary trans-
formations, it is easy to prove that for the spin-Hall current
along the z direction we have IzsH��so � 0; 	so� �
IzsH��so; 	so � 0� and IzsH��so � 	so� � 0. When there is
no Rashba spin-orbital interaction (�so � 0) and only
Dresselhaus term exists, we have obtained exactly the
same USCF value and behavior as that of Rashba term
alone. When both Rashba and Dresselhaus terms are
present, it is not obvious that the USCF persists. This is
because these two terms have different symmetry—the
Rashba coupling arises from the structure inversion asym-
metry with SU(2) symmetry, while the Dresselhaus cou-
pling arises from the bulk inversion asymmetry with
SU(1,1) symmetry [16]. From Figs. 3(b) and 3(c) we see
that for the latter situation (both �so and 	so � 0), the
results are similar to the case of pure Rashba or pure
Dresselhaus interaction. Because IzsH��so � 	so� � 0, the
USCF curves have a dip to zero when �so � 	so. Defining
tso2 � 	so=2a, Figs. 3(b) and 3(c) show that USCF is
reached when jtso2 � tsoj � 0:4. Finally, the inset of
Fig. 3(a) shows that the USCF is independent of Fermi
energy when both SO interactions are present.

In summary, for the spin-Hall effect generated by the
Rashba and Dresselhaus interactions in mesoscopic
samples, our results strongly suggest the existence of a
universal spin-Hall conductance fluctuation due to impu-
rity scattering in the quantum coherent regime. In this
regime, the USCF is characterized by sample-to-sample
fluctuations of GsH for a given SO interaction (Rashba or/
and Dresselhaus) strength tso, measured by quantity
rms�GsH� with a universal amplitude g � � e

4� where � �
0:18, which is independent of system size, impurity scat-

tering strength, and Fermi energy. Importantly, this fluc-
tuation amplitude is of the same order as the spin-Hall
conductance itself. Comparing with the familiar UCF in
charge conductance of disordered mesoscopic samples,
USCF originates from a similar physics of the quantum
interference effect which leads to significant sample-to-
sample fluctuations in spin-Hall conductance. A main dif-
ference is that the spin-Hall effect is due to SO interactions
in the sample, thereby the USCF also depends on the SO
parameter tso (or tso2), and our numerical results can be
well fitted by a functional form of rms�GsH� �
g tanh�jtso � tso2j=0:17�.
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FIG. 4. (a)–(d) The distribution of the spin-Hall conductance
for different disorder strengths at a fixed energy E � 1 and tso �
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